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Abstract—Numerical solutions for laminar heat transfer of a non-Newtonian fluid in the thermal entrance

region of a square duct are presented for three thermal boundary conditions. The power-law model

characterises the non-Newtonian behavior. The numerical results show that for each flow behavior index the

Nusselt number decreases from a maximum value at the entry plane to a limiting value when both velocity

and temperature profiles are fully developed. The results are compared with the available solutions for
Newtonian fluid and excellent agreement is found.

NOMENCLATURE

a, half width of square duct;

¢,  specific heat of the fluid at
constant pressure;

D,, hydraulic diameter of the duct,
D, = 4 (cross-sectional area)/
perimeter ;

fo»  “Darcy” or “large” friction
factor, (—dp/dx),,Dy/(pul/2)
[dimensionless];

Gz, Graetz number, Re, Pr/(x/2D,)
[dimensionless];

I,, dimensionless invariant, defined
by equation (4);

i,j,k, indices, indicating positionsin X, Y
and Z directions respectively;

k, thermal conductivity of fluid ;

m, parameter in power law stress strain
relationship, consistency index ;

n, flow behavior index, parameter in the
power law model [ dimensionless];

P, fluid static pressure;

Nu, Nusselt number, for fully developed
flow, hD,/k [dimensionless];

Nu, (), local Nusselt number for the thermal
entrance region: the second
subscript in ( ) designates the
associated thermal boundary
condition—the local Nusselt
number is an average value with
respect to perimeter at any
given cross section x;

Nu,, 1, logarithmic mean Nusselt number

for (T) boundary condition;

Prandtl number, pc,u,a/kRe,

[dimensionless];

¢,  input heat flux per unit length
through the walls of one quadrant
of the duct;

Pr,
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q",  input heat flux per unit area
through the duct wall;
Reynolds number based on duct half
width, (pa"ul~")/m [dimensionless];
Reynolds number for the duct based
on hydraulic diameter, (oDjuZ™")/m
[dimensionless];
S, dimensionless local viscosity,
defined by equation (3);
T, dimensionless fluid temperature;
= (t - tw)/(te - tw) for @
boundary condition; = (t—t,)/(¢'/k)
for @ boundary condition;
= (1=t )/(g"a/k) for @
boundary condition;
u, axial fluid velocity in duct ;
average fluid velocity in duct;
U,  fluid axial velocity component in the
X direction, u/u,, [dimensionless];
, rectangular cartesian coordinates;
X, dimensionless axial coordinate,
(x/a)/Re,;

X*  dimensionless axial distance,
* =1/Gz = (x/D,)/(2Re,Pr);
Y, Z, dimensionless transverse

coordinates, Y = y/a, Z = z/a;
W,  relaxation parameter.
Greek symbols
o, fluid density;

R

local dynamic fluid viscosity
coefficient at a point in the
square duct;

0, prefix denoting a difference.
Subscripts

b, bulk mean;

e, initial valueat x =0

(at duct entrance);
fully developed laminar flow;
m, mean;
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H1, referringto (@) boundary
condition;

H2, referringto @ boundary
condition;

T, referring to @ boundary
condition;

w, wall,

1. INTRODUCTION

INDUSTRIES in which non-Newtonian fiuid behavior is
encountered include those dealing with rubber,
greases, polymer solutions or melts, pharmaceuticals,
paints and biological fluids. An understanding of such
non-Newtonian fluid flow behavior will contribute
substantially to the solution of a variety of problems. It
isimportant to have a knowledge of the characteristics
of the forced convective heat transfer in steady laminar
non-Newtonian flow through non-circular ducts to
exercise a proper control over the performance of the
heat exchanger and to economise the process.

Laminar flow solutions for Newtonian fluids were
compiled by Shah and London [1] and Porter [2] in
an exhaustive manner. The theoretical laminar flow
solutions for heat transfer and flow friction for twenty
one straight ducts and four curved ducts were com-
piled by the former while the latter compiled the
laminar flow solutions for Newtonian as well as non-
Newtonian fluids with constant and variable fluid
properties. While Porter considered a very general
problem, the report by Shah and London is much
more exhaustive in the more limited area.

For Newtonian laminar heat transfer, Montgomery
and Wilbulswas [3] and Lyczkowski et al. [4] solved
the thermal entry length probiem for the rectangular
ducts by using explicit finite difference method. The
effects of axial heat conduction, viscous dissipation
and the thermal energy sources within the fluid were
neglected. Heat-transfer solutions for laminar flow of
non-Newtonian fluids in non-circular ducts other than
parallel plate geometry [5, 6] are not available in the
literature.

In this paper, the forced convective heat-transfer
information as a function of the pertinent non-
dimensional numbers for three boundary conditions,

, @ and is presented for the non-
Newtonian flow in a square duct.

2. GOVERNING EQUATIONS

The applicable dimensionless momentum and
energy equations for the non-Newtonian case with
appropriate boundary conditions are outlined below
to describe the heat-transfer characteristics through
the straight square duct.

Three representative heat-transfer modes as sugges-
ted by Irvine [7] for the rectangular channel case are
considered. The boundary conditions on the energy
equation present a problem for square duct. The three
cases considered are:

(1) Constant wall temperature both peripherally
and axially ; referred to as @ boundary condition.
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(2) Constant heat input per unit axial distance and
constant peripheral wall temperature at each axial
position, with wall temperature varying axially only;
referred to as (&) boundary condition.

(3) Constant heat input per unit axial distance and
per unit peripheral distance; referred to as @
boundary condition.

The channel configuration and coordinate system
are shown in Fig. 1. The origin of the coordinate

i
i
H
i
i

F1G. 1. Configuration and coordinate system for square
duct.

system is at the bottom left corner of the duct. The
application of appropriate symmetry conditions at the
cross-section center lines permits the restriction of the
solution to one quadrant of the square duct. For the
hydrodynamically developed flow, there is only one
nonzero component of velocity u, and the constitutive
equations of motion reduce to a single nonlinear
partial differential equation of the form
dp

6( du +0( Ou +
oy ”5y 0z ﬂaz dx

where = m[{(u/dy) + (Qu/z)*]"~ 2, local vis-
cosity at a point in the quadrant.

In terms of dimensionless variables and parameters,
equation (1) reduces to

g (S(?U + ] (SGU +
oY\ oY,/ 9Z\ oz

The function S is a variable viscosity and is defined in
terms of I,, the second invariant of the irrotational
strain-rate tensor. The power law model used in this
work to describe the stress strain-rate relation for
pseudoplastic fluids is given by

0 (1)

fpRe
y =0 @

S=1gv2 3)
where
n=(T () "
Y iz
Equation (2) is subject to the boundary condition:
atthewalls, Y =0and Z=0:U =0 (3)

and the constraining equation:

J'l J‘ vudydzZ=1. 6)
o Jo
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Equation (6) can be regarded as indirectly relating the
value of f,Re,, to the parameter n, the flow behavior
index, which appears in the constitutive equation of
motion, equation (2).

The dimensionless governing boundary-layer energy
equation for constant property flow, neglecting axial
conduction and viscous dissipation, is

aT 1 62T+62T
0X Prioy? 8z |

The boundary condition for (T) , @) and @
cases are given as follows:

M

Case 1:
TO,Y,Z)=1 8)
T(X,0,Z2)=0 )
T(X,Y,0)=0 (10)
QT—(X,I,Z)=0 11)
aY
531(X,Y,1)=0. (12)
0Z
Case 2:
TO,Y,Z)=0 (13)
tar tar
J‘oﬁodY+LW°dZ=l (14)
a—T(X,I,Z) =0 (15)
ay
i7—N(X, Y,1)=0. (16)
oz
Case 3:
T©0,Y,Z)=0 a7
?—T—(X,O,Z)=1 (18)
i) ¢
oT
ﬁ(X, Y,0)=1 19)
a—T(X, 1,Z)=0 (20)
oY
QZ(X, Y,1)=0. (21)
oZ

3. FINITE-DIFFERENCE REPRESENTATIONS
AND METHOD OF SOLUTION

The numerical solution of equation (7) is charac-
terized by the replacement of continuous derivatives
by finite difference representations defined at the nodes
of a three dimensional rectangular mesh superimposed
on one quadrant of a cross-section of the duct.

The indices (i, j, k) indicate positions in the X, Y and
Z directions respectively. The origin is designated by i
= j = k = 1. The axial mesh spacing is k.. The cross-
section center lines, Y = 1 and Z = 1, are designated
by j=N+1 and k = N+1 respectively. The trans-
verse mesh spacings h, and h, are both equal to 1/N,
where N is the number of increments between the wall
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and center-line across the quarter duct. The values of
U and T are denoted by the following notation.
B2(j, k) denotes the variable § 4t a point in the mesh (i
+1,j, k) and B1(j, k) denotes the variable g at (i, j, k).
For example, in T2(j, k), the index j gives the position
relative to origin in the Y direction and the second
index k gives the position in the Z direction.

The dimensionless fully developed velocity profile,
U, for each flow behavior index, n, is obtained from the
marching solution described in an earlier paper of the
authors [8]. The following finite difference repre-
sentations are developed with the notation described
above.

aT _ T2(j,k)—T1(j,k)

= 22
0X h, (22)
*T _ T2(j+1,k)—2T2(j, k) + T2(j—1,k)
v K2
23)
&*T _ T2(j, k+1)—2T2(j, k) + T2(j, k- 1)
0z* h? '
(24)
The finite difference form of energy equation is
T2(j,k)—T1(j, k
U26,K) (j, k)—T1(j, k)
h,
_ 1 [T2(j+1,k)=2T2(j, k) + T2(j— 1, k)
"~ Pr hZ
T2(j, k+1)—2T2(j, k)+ T2(j, k—1)
+ hf .
(25)

The variable T'1 is known while the variable T2is to
be determined at axial position (i+1). The iterative
procedure employed is described for each of the
thermal boundary conditions. The iterative scheme for
the solution of equation (25)is extrapolated Liebmann
method. The principal variable for equation (25) at (i
+1,j, k) is the axial temperature at that point.

The numerical solution, obtained by using the
extrapolated Liebmann method [9] is an iterative
procedure requiring initial estimates of the variables at
each node. The results from the preceding axial
position are substituted as an initial guess for the
variables at (i + 1) position. The iterative scheme of the
principal variable (25)is

(i+1) (@)
T20, k) = T2(, k)

1)) (1+1)
—W[d,(T2(+1,k)+ T2(—1,k)

1) (1+1)
+ T2, k+1)+ T2(G, k—1))

(1)
—d, T2(j, k) +de]

for j=2,3,...,N+1
and k=2,3,...,N+1

(26)
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where 1 refers to the iteration counter, W is the
relaxation parameter, and,

dy = —h/(Prh,h,), @27
dy = 4d, - U2(, k), 28)

and
dy = —U2(, k)T1(, k). (29)

Equation (26) is used to solve for each value of T2(j, k)
in the field, repeating in some regular order until the
values of T2(j,k) on successive iterations agree to
within the desired accuracy, equal to, 1076

(a+1 @O <10
T2(j, kY — T2(, k)

for j=2,3,...,N+1, and
k=23,...,N+1.

A step h, downstream is then taken and the above
process is repeated. Convergence of the iterative
procedure is obtained by underrelaxation, the re-
laxation parameter being 0.75.

Stability and rate of convergence are functions of the
relaxation parameter, the mesh size (axial as well as
transverse), the axial velocity profile and the nature of
the estimated temperature profile. The results of the
numerical experiments indicate that the finite differ-
ence equations of the model are consistent and stable.

(30)

(a) @ Condition

After the dimensionless temperature distribution is
obtained, the bulk mean temperature, T;, the local
Nusselt number, Nu, , and the logarithmic mean
Nusselt number, Nu,, 5, are computed at the axial
position in the following way.

1 pi
R=J J UT2dYdZ. (31)

0 JO
Equation (31) is evaluated using Simpson’s Double
Integral Rule. Based on the energy balance on the duct
length of d0x, the local Nusselt number Nu, , is
presented in terms of the fluid bulk mean temperature
gradient along the flow length in equation (32).

Nu,r = —(Pr/T,)[dT,/dX). (32)

The local Nusselt number Nu, ;. can also be expressed
in terms of temperature gradient at the wall as,

1 tar
Nu,;=— — dY}.
TN Je 0Y z=0

(33)

The numerical values obtained for Nu, ; from

equations (32) and (33) agree excellently up to first
four digits.

az+ [ 2
Y=0 0 02

Nitnr = = In(1/T). (34)

Even though Prandtl number appears in the dimen-
sionless energy equation explicitly, for all values of

Asnok R. CHanDRuPATLA and V. M. K. Sastri

Prandt! number, the thermal entry solution, that is, the
variation of predicted mean Nusselt number with
Graetz number, obtained is the same. But the effect of
Prandtl number is included in the parameter Graetz
number which is defined as Pr/(X/4).

(b) @) Condition

The wall temperature is assumed constant around
the perimeter at any given cross-section and to vary
only with distance along the duct. At each step of the
computation, a new value of wall temperature is
computed from the boundary condition of equation
(14).

The finite difference form of the boundary condition,
equation {14) is explained below. Expressing only the
gradients in finite difference form gives

j* 3T2(,1)-4T2(:2)+T2.3)
0 2h,
.\ jl 3T2(1, k)~ 4T2(2, k) + T2(3, k)
o 2h

¥

dZ =1.

35)
Now, for @ boundary condition, by assumption,

T2G, 1) = T2(L, k) = T |4, (36)

where T, is the dimensionless wall temperature.
Rearranging and solving for T,,, and noting that h,
= h, and symmetry across the diagonal exists,

4t
Tolisy =§f T2(2,k)dZ
0

: 1T23kdz hs
3 (3,k) +?.

0

(37)

Note that the wall temperature appears in the
integrals. Solving for T, |, ,, using the finite difference
form of Simpson’s 1/3 rule for integrals, equation (37)
reduces to

1 a4y X
Tlivi =7 [4 2 T2(2,k)

+.......
35105 5.

N~-1 1
+2 ¥ T22,k)+T2(2,N+1)

k=35

1 N
e | 4 T2(33, k
105[k§,4 G0

N-1 ]
+2 ¥ T23,k+T23,N+1)}

k=35

(38)

After each sweep through the field, the wall tempera-
ture T, is computed using equation (38). Successive
sweeps through the cross-section are taken until all
values of T2(j, k) change by less than 107° on two
successive iterations. The solution is then considered
converged and another h, step taken downstream.

The peripheral average local Nusselt number
Nu, 4, and the mean Nusselt number Nu, ,, are
evaluated in the following way.
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1.0
N = 39
e T LT )
1 X
Nty i1 =‘iJ‘ Nu, g dX
0
h i
=§[N“x,mh+2 Y, Nugmly
1=2,3
1/ 1
+Nug gylis X . (40)

© @ Condition

The energy equation in finite difference form is given
by equation (25). The finite difference forms of the
boundary conditions, equations (18) and (19) are
explained below. Equation (18) in difference form is
expressed as

3T2(1, k)—4T2(2,k)+ T2(3, k)
2h N
Equation (19) in difference form is expressed as
3T2(j,1)-4T2(j,2)+ T2(j,3) _
2h,

Equations (41) and (42) are solved for T2(1, k) and
T2(j, 1) respectively.

T2(j, 1) = 3h, +$T2(j,2) - $ T2, 3)
T2(1, k) = $h,+$T2(2, k) - $ T2, k)
for j=2,3,...,N+1
and k=2,3,...,N+1L

10. @l

y

0. (42

43)
(44)

The solution method is now similar to that ex-
plained already. The wall temperatures along with the
interior temperatures are unknown. The values at axial
position i are taken as an initial guess and the
equations (43) and (44) are solved along with equation
(26). After each sweep through the field, the new wall
temperatures are computed from equations (43) and
(44). Successive sweeps through the cross-section are
taken until all values of T2(j, k) change by less than
1078 on two successive iterations.

The peripheral average wall temperature T,, the
local Nusselt number Nu, , and the mean Nusselt
number Nu,, 4, are evaluated after the solution has
converged at each axial step in the following way.

1
T, = J T2(j,1)dY
0

h N
= _32{72(1, +4 Y T2k1)

k=2,4

N-1
+ ¥ T2(k,1)+T2(N+1,1)] (45)
k=3,5
N 20 (46)
U H2 = T s
" (T.-T)
1 X
Num'"2=_J‘ Nux’szX. (47)
X Jo
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4. RESULTS AND DISCUSSION
Limiting Nusselt numbers
The limiting Nusselt number Nuy, Nuy, and Nuy,
for Newtonian fluids are presented in Table 1 with the
results of other investigations.

Table 1. Nuy, Nuy, and Nuy, for Newtonian
fluids—square duct

Investigation Nug Nuy,  Nuy,
Clark and Kays [10] 2.890 3.630 —
Lyczkowski et al. [4] 2975 — 3.230
Schmidt and Newell [11] 2970 3599 —
Shah and London [1] 2976 3.608  3.091
Montgomery and
Wibulswas [3] 2,650 3.600 —
Present numerical
solution 2975 3612 3.095

The excellent agreement obtained with the limiting
Nusselt numbers for Newtonian fluids [1] for (7) ,
@ and @ conditions establishes the credentials
and validity of the numerical marching technique
employed in the present investigation. Further, the
accuracy obtained is sufficient to warrant the use of the
scheme to attack the thermal entry problems for
pseudoplastic fluids also with a high degree of con-
fidence.

For hydrodynamically and thermally developed
laminar flow of non-Newtonian fluid in a square duct,
the limiting Nusselt numbers Nuy, Nuy, and Nuy,,
when all four walls are transferring heat, are presented
in Table 2 for 0.5 < n< 1.0,

Table 2. Nusselt numbers for fully developed velocity and
temperature profiles in a square duct for pseudoplastic fluids

Flow behavior index, n Nu; Nug, Nuy,
10 2975 3.612 3.095
0.9 2.997 3.648 3.106
0.8 3.030 3.689 3.135
0.75 3.050 3713 3.152
0.7 3.070 3.741 3.171
0.6 3.120 3.804 3.216
0.5 3.184 3.889 3.274

It is observed from Table 2 that Nu, for the case n
= 0.5 is 3.184 and is 7% more than the solution for
Newtonian fluids. Similarly, for n = 0.5, Nuy, and
Nuy, are 7.7 and 5.8%; more than the solutions for
Newtonian fluids respectively.

For Newtonian fluids, the result for Nu; is 2.975.
This value is 17.6%, less than that for () condition
and 3.9% less than the solution for ({2 condition.
The result for @ condition is 14.3% less than the
solution for @ condition.

For n = 0.5, the result for Nu;is 18.1% less than the
solutionfor () condition and 2.7% less than that for

condition. The result for @) condition is
15.8%, less than the solution for condition.
Similar behavior is observed for 0.6 < n < 0.9.
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F1G6. 2. Square duct—~Nu,, y, Nu, 4, and Nu, ,, for fully
developed velocity profile;n = 1.0.

Thermal entry solutions

For hydrodynamically developed flow, the local and
mean Nusselt numbers as functions of Graetz number,
0 < Gz < 200, in square duct are presented for 0.5 < n
<10for (O, @) and conditions.

Nu,, 1, Nu, ,, and Nu, 4, as functions of Graetz
number are presented in Figs. 2 and 3 for n = 1.0 and
0.5 respectively. The numerical results of Montgomery
and Wibulswas [3] for (O) and @) boundary
conditions for Newtonian fluid are compared with the
present numerical solution in Fig, 2.

The effect of flow behavior index, n, on Nusselt
numbers for (T), @) and @ boundary con-
ditions is shown in Fig. 3. The Nusselt number
increases with decreasing value of flow behavior index.

(a) @ Condition

Nu, r and Nu,, ; as functions of Graetz number are
presented in Tables 3 and 4 respectively for 0.5 <n
< 1.0. It is observed from Table 3 that the Nusselt
number Nu, r, in the range of 0.5 to 1.0 for the flow
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4.0p

200

FiG. 3. Square duct—~Nu,, 7, Nu, y, and Nu, ,, for fully
developed velocity profile; n = 0.5 and 1.0.

behavior index considered, has a maximum value at
the entry plane of the duct and decreases as the Graetz
number decreases. Nu, ; approaches the value of the
limiting Nusselt number Nuy, for Graetz number less
than 10.

Nu, 7 as a function of Graetz number is shown in
Fig. 4 and is compared with the results of [3] and [4].
Extremely good agreement is found with the results of
Lyczkowski et al. [4] for X* > 0.075 and the results
are identical for X* > 0.09375. There is an excellent
agreement with the numerical results of [3] for Nu,
and Nu, , from Graetz number 200 down to 20.
However, for Gz < 10, the solution of [ 3] seems to be
diverging rather than attaining a constant and steady
value which is not the case in the present solution.
Shah and London [1] observed that the results of
Lyczkowski et al. [4] are more accurate.

(b) @ and @ conditions
Nu, gy, Nuy 4y, Nu, gy, and Nu,, ,, as functions of
Graetz number are presented in Table 58 respectively

5.5 T I 1T T T 177171 f
15 30 60 70 80 ,
Present work 7
| ——— Lyczkowskiet al. / _
50 — — — Montgomery & //
Wibuiswas
%
2
z
25 { AN NN SN A T I O !
5 10 20 25 40 50 100 150 200

F1G. 4. Square duct—Nu, r for fully developed velocity profile; n = 1.
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Table 3. Nu, r as functions of Gz and n for fully developed velocity profiles

'Nux,T

Flow behavior index, n

Gz 1.0 0.9 0.8 0.75 0.7 0.6 0.5
0 2975 2997 3.030 3.050 3.070 3.120 3.184
10 2976 3.003 3.036 3.055 3.076 3.126 3.189
20 3.074 3.100 3.132 3.151 317 3.220 3.283
25 3.157 3.182 3214 3.233 3.253 3.302 3.365
40 3432 3458 3.490 3510 3.531 3.581 3.646
50 3.611 3.636 3.670 3.690 3711 3.763 3.830
80 4.084 4.112 4.149 4.170 4.193 4.248 4.321
100 4.357 4.386 4.424 4.446 4470 4.528 4.604
1333 4.755 4.787 4.827 4.850 4.876 4,937 5.018
200 5412 5.448 5.492 5.518 5.546 5.614 5.702

Table 4. Nu,, 1 as functions of Gz and n for fully developed velocity profiles

Nu, r

Flow behavior index, n

Gz 1.0 09 0.8 0.75 0.7 0.6 0.5
0 2975 2997 3.030 3.050 3.070 3.120 3.184
10 3.514 3.543 3.577 3.597 3.619 3.671 3.739
20 4024 4055 4.091 4.112 4.135 4.191 4.263
25 4.253 4.284 4.321 4.343 4.367 4424 4.499
40 4.841 4877 4917 4.941 4.967 5.029 5.110
50 5.173 5211 5253 5.278 5.305 5370 5.455
80 5.989 6.033 6.080 6.107 6.137 6.209 6.304
100 6.435 6.483 6.532 6.561 6.592 6.669 6.768
1333 7.068 7.123 7175 7.206 7.240 1322 7.429
200 8.084 8.150 8.208 8.242 8.280 8.370 8.488
Table 5. Nu, 4, as functions of Gz and » for fully developed velocity profiles
N ux.H 1
Flow behavior index, n
Gz 10 0.9 0.8 0.75 0.7 0.6 0.5
0 3.612 3.648 3.689 3.713 3.741 3.804 3.889
10 3.686 3722 3.756 3.789 3.817 3.882 3.968
20 3.907 3.941 3.983 4.007 4.047 4.112 4.182
25 4,048 4083 4.124 4.149 4.191 4.256 4.325
40 4.465 4.501 4.544 4.569 4.619 4.686 4.753
50 4.720 4.757 4.802 4828 4.882 4.951 5.017
80 5.387 5427 5476 5.504 5.568 5.644 5.711
100 5.769 5811 5.862 5.892 5.962 6.042 6.109
1333 6.331 6.376 6431 6.463 6.550 6.638 6.696
160 6.730 6.778 6.836 6.869 6.952 7.043 7.114
200 7.269 7.320 7.381 7417 7.507 7.604 7.678
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Table 6. Nu,, 4, as functions of Gz and n for fully developed velocity profiles

Num.Hl

Flow behavior index, n

Gz 1.0 0.9 0.8 0.75 0.7 0.6 0.5
0 3612 3.648 3.689 3713 3.741 3.804 3.889
10 4.549 4.586 4.610 4.657 4.666 4.735 4.847
20 5.301 5.340 5.388 5416 5.447 5.522 5.619
25 5.633 5.674 5.723 5.752 5.784 5.861 5962

40 6.476 6.521 6.575 6.606 6.641 6.725 6.835
50 6.949 6.996 7.052 7.085 7122 7.210 7324
80 8.111 8.163 8.225 8.262 8.302 8.399 8.526
100 8.747 8.801 8.867 8.905 8.948 9.050 9.183
1333 9.653 9.711 9.780 9.822 9.867 9975 10117
160 10279 10339 10412 10454 10502 10614  10.761
200 11103 11166  11.241 11286 11.335 11453  11.607

Table 7. Nu, y, as functions of Gz and n for fully developed velocity profiles

Nuy g,

Flow behavior index, n

Gz 1.0 0.9 0.3 0.75 0.7 0.6 0.5
0 3.095 3.106 3135 3152 3171 3.216 3.274
10 3.160 3.185 3213 3232 3.252 3.298 3.358
20 3.359 3.382 3410 3.427 3445 3.490 3.548
25 3.481 3.504 3.532 3.549 3.567 3611 3.669
40 3.843 3.866 3.893 3910 3.928 3972 4.031

50 4.067 4.089 4117 4.133 4.152 4.196 4.255
80 4.654 4.6717 4.704 4.721 4.740 4.785 4.846
100 4.993 5.015 5.043 5.060 5.078 5.124 5.187
1333 5.492 5514 5.542 5.559 5.578 5.625 5.688
160 5.848 5.870 5.898 5915 5934 5.981 6.046
200 6.330 6.352 6.379 6.396 6.415 6.463 6.529

Table 8. Nu,, g, as functions of Gz and n for fully developed velocity profiles

Num,HZ

Flow behavior index, n

Gz 1.0 0.9 0.8 0.75 0.7 0.6 0.5
0 3.095 3.106 3.135 3.152 317 3.216 3.274
10 3915 3.938 3.965 3.982 4.000 4,045 4.104
20 4.602 4.623 4.650 4.667 4.685 4.729 4.788
25 4.898 4920 4.946 4.963 4.980 5.024 5.084
40 5.656 5.676 5.702 5718 5.736 5.780 5.840
50 6.083 6.103 6.128 6.144 6.162 6.206 6.266
80 7.138 1.157 7.181 7.196 7.213 7.257 7.318
100 7719 7.737 7.760 7.775 7.792 7.835 7.895

1333 8.551 8.567 8.589 8.603 8.619 8.661 8.721
160 9.128 9.143 9.164 9.178 9.193 9.234 9.293
200 9.891 9.905 9.924 9.937 9.951 9.980  10.048
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for 0.5 € n < 1.0. The observations madein the case of
(@) condition hold good in these cases.

It is observed from Fig. 2 that the present numerical
solution Nu, ,, is consistently higher than that pre-
sented in [3]. This difference is due to the different
numerical schemes adopted. Specifically, Mont-
gomery and Wibulswas [3] used a different procedure
for evaluating the wall temperatures. For the same
reason, the Nu,, 4, are also higher than the results of

[3]

5. CONCLUSIONS

In this paper numerical solutions are obtained for
laminar flow forced convection heat transfer of
pseudoplastic fluid in the thermal entrance region of a
square duct for (a) constant and uniform wall tempera-
ture peripherally as well as axially, (b) constant axial
wall heat flux with uniform peripheral wall tempera-
ture and (c) constant axial wall heat flux with uniform
peripheral wall heat flux.

The extrapolated Liebmann method is used for the
iterative scheme to obtain the numerical solutions. The
numerical solution for Newtonian fluid gives values of
the limiting Nusselt numbers which agree excellently
with those calculated by others {1, 117]. This indicates
that the finite difference method employed here is
accurate and effective.

From a comparison of the numerical solutions it is
concluded that for the same Graetz number and
thermal boundary conditions a non-Newtonian fluid
with flow behavior index less than one gives a higher
heat-transfer coefficient than a Newtonian fluid. The
laminar heat-transfer solutions can be used as a lower
limit in design since experimental values of the heat-
transfer coefficients, generally, are higher than the
predicted ones.

Due to reduction in friction power requirement [8]
and the increase in heat-transfer rates, pseudoplastic
fluids seem to be better working fluids in heat exchange
equipment compared to Newtonian fluids.
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CONVECTION THERMIQUE, FORCEE ET LAMINAIRE, POUR UN FLUIDE
NON NEWTONIEN DANS UN CONDUIT CARRE

Résumé—On présente les solutions numériques pour le transfert thermique laminaire d’un fluide non

newtonien dans la région d’entrée d’un tube carré, pour trois conditions aux limites thermiques. Le

modele en loi puissance caractérise le comportement non newtonien. Les résultats numériques montrent

que pour chaque indice de comportement, le nombre de Nusselt décroit, depuis une valeur maximale &

la section d’entrée, jusqu’a une valeur limite quand les profils de vitesse et de température sont tous

deux établis. Les résultats sont comparés avec les solutions connues pour les fluides newtoniens et on
trouve un accord excellent.

DER WARMEUBERGANG EINES NICHT-NEWTONSCHEN FLUIDES
BEI ERZWUNGENER LAMINARER KONVEKTION IN EINEM KANAL
MIT QUADRATISCHEM QUERSCHNITT

Zusammenfassung —Fiir den Wirmeiibergang eines nicht-newtonschen Fluides bei laminarer Strémung im

Einlaufbereich eines Kanals mit quadratischem Querschnitt werden fiir drei thermische Randbedingungen

numerische Losungen angegeben. Das nicht-newtonsche Verhalten wird durch ein Potenzgesetz be-

schrieben. Fiir jeden Stromungsfall zeigen die numerischen Ergebnisse einen Abfall der Nusselt-Zahl vom

Maximalwert in der Einlaufebene auf einen Grenzwert bei voll ausgebildeten Geschwindigkeits- und

Temperaturprofilen. Die Ergebnisse werden mit vorhandenen Lsungen fiir newtonsche Fluide verglichen;
dabei ergibt sich eine ausgezeichnete Ubereinstimmung.
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TEITUJIOOBMEH HEHBIOTOHOBCKOM XWIKOCTU B KAHAJIE KBAJIPATHOT'O
CEYEHWSA TTPH BBIHYXIEHHOM KOHBEKLIMM B JIAMUHAPHOM TMOTOKE

Austotamms — [IpeacTas/ieHbl YHC/ICHHBIE PELlCHEA 3aJa%H TenA006MEeHa NPA NaMHHADHOM TEYCHHH
HEHBIOTOHOBCKOH MHIKOCTH Ha TEIIOBOM HaYanbHOM YYacCTKe KAHANA NMPAMOYTONLHOIO CeYeRms
IUIAl TPeX THIOB TEIUIOBBIX rPAHUMHBIX YCIOBHi. HeHBIOTOHOBCKOE NOBEIEHHE CPelibl OXAPAKTEPH-
30BAHO CTENEHHOH MOACNBI. YHC/EHHbIE PE3Y/IbTATHl HOKA3MBAIOT, YTQ JUI KAXKAOro 3HAYEHMs
HHIEKCA HEHBIOTOHOBOCTH 4HCNO HyccenbTa YMEHBIIAETCS OT MAKCHMANBHON BEHYMHBI HAa BXOJE
O HEKOTOPOTO MPEACALHOrO 3HAYEHMS NMPH TOJHOCTBIO PA3BHTHIX NPOPHUIAX CKOPOCTH H TEM-
nepatypsl. CpaBHEHHE TOMYYEHHLIX DPE3YNBTATOB C HMEIOLIHMMCH DELICHHAMH [ HEHBIOTO-
HOBCKHYX XHIKOCTEH NOKa3an0 XOpoluee COOTBETCTBHE MEXNY HUMH.



